summary
method for class "specr". It provides a printed output including
technical details (e.g., cores used, duration of the fitting process, number
of specifications), a descriptive analysis of the overall specification curve,
a descriptive summary of the resulting sample sizes, and a head of the results.
An object of class "specr", usually resulting of a call to specr
.
Different aspects can be summarized and printed. See details for alternative summaries
In combination with what = "curve"
, provide a vector of one or more variables (e.g., subsets, controls,...) that denote the available analytic choices to group summary of the estimate.
In combination with what = "curve"
, unquoted name of parameter to be summarized. Defaults to estimate.
Named vector or named list of summary functions (individually defined summary functions can included). If it is not named, placeholders (e.g., "fn1") will be used as column names.
The number of digits to use when printing the specification table.
The number of rows of the specification tibble that should be printed.
further arguments passed to or from other methods (currently ignored).
A printed summary of an object of class specr.object
.
The function used to create the "specr.setup" object: setup
.
# Setup up specifications (returns object of class "specr.setup")
specs <- setup(data = example_data,
y = c("y1", "y2"),
x = c("x1", "x2"),
model = "lm",
controls = c("c1", "c2"),
subsets = list(group1 = unique(example_data$group1)))
# Run analysis (returns object of class "specr.object")
results <- specr(specs)
# Default summary of the "specr.object"
summary(results)
#> Results of the specification curve analysis
#> -------------------
#> Technical details:
#>
#> Class: specr.object -- version: 1.0.1
#> Cores used: 1
#> Duration of fitting process: 0.495 sec elapsed
#> Number of specifications: 64
#>
#> Descriptive summary of the specification curve:
#>
#> median mad min max q25 q75
#> 0.13 0.41 -0.39 0.66 -0.14 0.39
#>
#> Descriptive summary of sample sizes:
#>
#> median min max
#> 338.5 323 1000
#>
#> Head of the specification results (first 6 rows):
#>
#> # A tibble: 6 × 25
#> x y model controls subsets group1 formula estimate std.error statistic
#> <chr> <chr> <chr> <chr> <chr> <fct> <glue> <dbl> <dbl> <dbl>
#> 1 x1 y1 lm no cova… middle middle y1 ~ x… 0.61 0.07 9.28
#> 2 x1 y1 lm no cova… old old y1 ~ x… 0.66 0.06 10.4
#> 3 x1 y1 lm no cova… young young y1 ~ x… 0.57 0.06 10.2
#> 4 x1 y1 lm no cova… all NA y1 ~ x… 0.62 0.04 16.4
#> 5 x1 y1 lm c1 middle middle y1 ~ x… 0.6 0.07 8.81
#> 6 x1 y1 lm c1 old old y1 ~ x… 0.64 0.06 9.81
#> # ℹ 15 more variables: p.value <dbl>, conf.low <dbl>, conf.high <dbl>,
#> # fit_r.squared <dbl>, fit_adj.r.squared <dbl>, fit_sigma <dbl>,
#> # fit_statistic <dbl>, fit_p.value <dbl>, fit_df <dbl>, fit_logLik <dbl>,
#> # fit_AIC <dbl>, fit_BIC <dbl>, fit_deviance <dbl>, fit_df.residual <dbl>,
#> # fit_nobs <dbl>
# Summarize the specification curve descriptively
summary(results, type = "curve")
#> # A tibble: 1 × 7
#> median mad min max q25 q75 obs
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0.126 0.412 -0.387 0.662 -0.139 0.395 338.
# Grouping for certain analytical decisions
summary(results,
type = "curve",
group = c("x", "y"))
#> # A tibble: 4 × 9
#> # Groups: x [2]
#> x y median mad min max q25 q75 obs
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 x1 y1 0.601 0.0388 0.541 0.662 0.577 0.623 338.
#> 2 x1 y2 -0.258 0.0784 -0.387 -0.178 -0.314 -0.211 338.
#> 3 x2 y1 0.232 0.0573 0.159 0.346 0.200 0.283 338.
#> 4 x2 y2 -0.0211 0.115 -0.127 0.0917 -0.0882 0.0572 338.
# Using customized functions
summary(results,
type = "curve",
group = c("x", "group1"),
stats = list(median = median,
min = min,
max = max))
#> # A tibble: 8 × 6
#> # Groups: x [2]
#> x group1 median min max obs
#> <chr> <fct> <dbl> <dbl> <dbl> <dbl>
#> 1 x1 middle 0.178 -0.387 0.613 331
#> 2 x1 old 0.221 -0.304 0.662 323
#> 3 x1 young 0.182 -0.310 0.567 346
#> 4 x1 NA 0.195 -0.339 0.620 1000
#> 5 x2 middle 0.130 -0.0693 0.228 331
#> 6 x2 old 0.204 -0.0836 0.346 323
#> 7 x2 young 0.101 -0.127 0.202 346
#> 8 x2 NA 0.144 -0.107 0.272 1000